
Muong-2

Calorimeter Algorithms

Aaron Fienberg
(g-2) computing review
7 November 2016



Requirements: overview

• Transform digitized detector waveforms into reconstructed 
decay events
– pulse finding: pulse island -> pulse area [ADC counts] & time
– calibration: pulse area -> pulse photoelectrons 
– clustering: pulse collection -> decay event energy, time, position
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Requirements: pulse finding

• separate distinct events for all Δt > 5	ns (pileup separation)

• do not introduce early-to-late systematic timing shifts 

• have low energy threshold for pulse reconstruction
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1.25	ns	/	sample



Requirements: calibration

• achieve absolute calibration in energy units

• control long term, short term, rate dependent gain changes

• 20 ppb budget for gain related systematic error 
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Requirements: clustering

• combine calibrated pulses from each decay positron 

• spatially resolve at least 2/3 of pileup events remaining after 
time separation, correctly partition energy
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Status: pulse finding overview

baseline pulse finding algorithm is template fitting
a template is an empirical pulse shape extracted from data

template fitting entails:
• building beam and laser template for each SiPM
• using template to fit pulse islands for time, energy, pedestal
• fitting additional pulses as needed, 2*nPulses + 1 parameters

advantages:
• fast
• precise time and energy extraction 
potential disadvantage:
• requires assumption of consistent, energy independent shape
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Status: template building

Template building is the process of generating an empirical 
pulse shape model from a set of digitized waveforms
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• sort	pulses	based	on	“phase”
(where	peak	falls	between	samples)

• normalize	each	pulse	by	area

• average	pulses	with	the	same	“phase”

• recombine	average	pulse	shapes	for	each	
“phase”,	offset	appropriately

• interpolate	these	more	finely	binned	
samples	with	a	cubic	spline	to	obtain	
template	function,	𝑇(𝑡)

• templates	will	be	stored	in	database



Status: template fitting

9

𝜎- uncertainty on	sample	i

𝐷- digitizer	sample i

𝑠0 scale of	pulse	j

𝑡- time of	sample	i

𝑡1,0	 time of	pulse	j

𝑃 pedestal	(baseline)

𝑚 number of	samples

𝑛 number	of	pulses

• fit	traces	with	𝜒7 minimization

• for	given	time	guess(es),	energy	and	
pedestal	parameters	are	linear	and	can	be	
found	analytically;	numerical	analysis	
needed	only	for	times

• number	of	pulses	to	fit	and	initial	time	
guesses	must	be	provided	as	input

• use	eigen c++ library	for	linear	algebra red	variables	are	fit	parameters



Status: multi-pulse fitting 

• fit single pulse first

• look for peaks in residuals

• add pulses one at a time

• use previous fit result for 
time guesses

• guesses must be 4 ns apart
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Three pulses, separate islands
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Status: pulse finding performance
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100%	pileup	separation	at	5	nstime	extraction	unbiased	by	multi-pulse	fit

20	ps single	detector	timing	resolution

• negligible	contribution	to	E	resolution

• processes	single	pulses	at	about	
100	kHz	per	CPU	(recon	bottleneck)



Status: absolute calibration
• absolute calibration through photostatistics

• illuminate SiPMs with laser

• vary laser intensity with filter wheel

• measure pulse area distribution

• fit variance vs mean with polynomial

• identify 𝑝9	as pulse area / p.e. (gain)

• measure beam energy in p.e.

• constants stored in database
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Status: gain correction

• precise scheme for long term and fill-scale gain correction still 
to be defined

• proposals for fill-scale corrections:
– measure single detector energy, time dependent gain 

perturbation response and apply pulse-by-pulse gain correction
– measure average early-to-late gain perturbation over entire 

data set and apply correction to final histogram

• long term gain correction achieved by comparing SiPM laser 
responses to laser monitor signals:
𝐺𝑎𝑖𝑛𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = CD

ECF ⋅
EHF
HD

, L: SiPM response, S: source monitors
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Status: clustering

• clustering algorithm takes a collection of calibrated crystal 
hits and outputs an arbitrary number of reconstructed decay 
positron parameters, called “clusters”

• basic two step clustering algorithm in place that meets 
baseline requirements:
– step one: time partitioning
– step two: spatial separation and energy partitioning
– Additionally, reports cluster position for single-positron clusters

• simulation suggests spatial separation will be confused by 
preshowering, can machine learning techniques help? 
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Status: cluster time partitioning
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fits	from	a	triple	pileup	event

n
pu

lse
s

fit	time	[ns]

• sort	fit	results	from	a	given	island	by	time

• group	results	with	ΔT <	∼ 5	𝑛𝑠



Status: cluster spatial separation
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• spatial	separation	runs	on	hits	
grouped	by	time	partitioning	

• current	algorithm	based	on	finding	
peaks	in	E	/	Emax far	from	max	crystal

• iterative	procedure,	will	find	arbitrary	
number	of	separate	clusters	(tested	
on	up	to	four)

• energy	partition	according	to	3x3	
sums	surrounding	cluster	centers,	
scaled	to	match	overall	total	energy

• Successfully	resolves	75%	of	over-
threshold	pileup	events	

• Negligible	contribution	to	
computation	time



Status: cluster position extraction
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• logarithmic	weighting	provides	best	
compromise	between	precision	and	
position	bias

• achieved	2	mm	resolution	at	2	GeV	
according	to	simulation,	consistent	with	
test	beam	data



Status: spatial pileup confusion
Effects that confuse the spatial separation algorithm:
• “false pileup,” false positives on single decay events that 

preshower before reaching a calorimeter 
(about 0.1% of events, according to simulation)

• extreme impact angles for low energy decays
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a false	pileup	event



Status: machine learning experimentation
we briefly experimented with feed forward (FF) neural networks 
and support vector machines (SVM) to see if they can 
distinguish false pileup
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double	event	classification	success	rate	for	NN	and	SVM
downward	slope	due	to	energy-position	correlations	
(the	positrons	far	away	are	generally	low	energy)

• classification	success	rate	
improved,	but	classification	
doesn’t	help	with	energy	
partitioning

• false	pileup	remains	an	issue

• merits	further	investigation



Future plans

• develop alternative analysis chain and alternative algorithms
– alternative clustering techniques
– further machine learning investigation
– one-step fitting-clustering algorithms

• build offline chain for Q-method analysis

• implement and test database integration

• stress test current system with simulation data and laser data 
as we build the calorimeters

23



Schedule

• Baseline analysis chain mostly ready; following shakedown 
over next months, it will be ready before beam arrives

• Q-method analysis chain must be defined in time to modify 
DAQ as needed

• Thank you!
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Backups
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Overall distribution
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Positron	impact	separation	[mm]

𝐸 9
/𝐸

7

One	crystal	width	(25	mm)



Spatial separation pileup reduction
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Energy	[MeV]

With	spatial	
separation

Monolithic	
calorimeters

Truth



Linear parameters given by:
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𝑠9
⋮
𝑃

		

Never	have	to	guess	for	pulse	sizes,	only	times.	
This	is	regardless	of	how	many	pulses	you	are	trying	to	fit.

𝑇-0 ≡ 𝜎0P9𝑇 𝑡0 − 𝑡1,-
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Time steps given by:

note:	for	single	pulse	fits,	this	is	only	one	equation	and	one	unknown
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𝐸/𝐸RST

Singles
Doubles

75	%	of	doubles	are	out	here;	
virtually	no	singles
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